

Linux Virtual Server is a software tool that supports load balancing among multiple Internet servers that share their workload. It can be used to build scalable network services.

H		<i>~</i> -	
Packe	t rewriting	tlow:	
The incoming packet fo	r web service would has sour	ce and destination ad	ddresses as:
SOURCE	202.100.1.2:3456	DEST	202.103.106.5:80
The load balancer will forwarded to the server	choose a real server, e.g. 172 as:	.16.0.3:8000. The pa	icket would be rewritten .
SOURCE	202.100.1.2:3456	DEST	172.16.0.3:8000
Replies get back to the	load balancer as:		
SOURCE	172.16.0.3:8000	DEST	202.100.1.2:3456
The packets would be w	vritten back to the virtual serv	er address and return	ned to the client as:
		DEOM	202 100 1 2-2466

やくやくやくやくやくやく

Advantages and Disadvantages

& Virtual Server via NAT & Virtual Server via IP Tunneling & Virtual Server via Direct Routing

13

VA

limited, because both request and reponse packets are rewritten by the load balancer. When the number of server nodes increase up to 20, the load balancer will probably become a new bottleneck.

- & greatly increasing the scalability of Virtual Server.
- 📚 & Disadvantages:

くちくちくちく

7

-

37

7

& real servers must support IP tunneling protocol.

15

17

VS-NAT, VS-Tunneling and VS-DRouting

	VS-NAT	VS-Tunneling	VS-DRouting
Server OS	any	tunneling	non-arp device
Server network	private	LAN/WAN	LAN
Server number	low (10~20)	high (>100)	high (>100)
Server gateway	load balancer	own router	own router

やくやくやくやくやく **Implemention Issues** IP Packet Traversing ROUTE Hook two places, LOCAL_IN VS Rules Connection VS Schedule & Hash Table Table Control Module Kernel User setsockopt() Abroc filesystem **IPVSADM**

client must be assigned to the same server either for functional or for performace reasons, such as FTP, SSL, http cookies.

Use the persistent template to handle connection affinity. <cip, 0, vip, 0, sip, 0> for FTP

<cip, 0, vip, vport, sip, sport> for persistent services except FTP.

1

7

4

V.

21

ひょうしん ひょうしょう しょうしょう The LocalNode Feature 🖻 🗞 In a virtual server of only a few nodes(2,3 or more), it is a resource waste if the load balancer is only used to direct packets. The LocalNode feature enable that the load balancer not only can redirect packets, but also can processe some packets locally.

- & IBM's TCP router
- & ONE-IP

& IBM's NetDispatcher

27

Conclusion & LVS has patched Linux kernel 2.0 and kernel 2.2 to support three IP load balancing techniques: & VS-NAT, VS-Tunneling, VS-DRouting & Four scheduling algorithms & RR, WRR, LC, WLČ & High scalability (up to 100 nodes) & High availability & Supporting most of TCP and UDP services, no modification to either clients or servers.

